Anitahilma’s Weblog

Just another WordPress.com weblog

Distilasi Campuran Biner

Azeotropic distillation: Etanol dan air membentuk azeotrop pada komposisi 95.6%-massa etanol pada keadaan standar. Dan masih banyak lagi campuran senyawa yang berkelakuan demikian. Nah, bagaimana cara untuk memisahkan komponen-komponennya agar memiliki kemurnian melebihi komposisi azeotropnya?

Umpan campuran biner (2-propanol dan ethyl acetate) hendak dimurnikan dengan cara distilasi dan kedua aliran produk pemisahan diharapkan memiliki kemurnian 99,8%-mol. Umpan tersedia pada kondisi tekanan atmosferik dan temperatur ambien. Terdengar familiar di telinga anda? Setidaknya Anda tidak boleh lupa bahwa 2-propanol dan etyhl acetate ialah campuran azeotrop. Bila Anda lupa atau bahkan belum mengerti tentang campuran azeotrop, mungkin penjelasan singkat ini bisa sedikit membantu.

Apa itu azeotrop? Azeotrop merupakan campuran 2 atau lebih komponen pada komposisi tertentu dimana komposisi tersebut tidak bisa berubah hanya melalui distilasi biasa. Ketika campuran azeotrop dididihkan, fasa uap yang dihasilkan memiliki komposisi yang sama dengan fasa cairnya. Campuran azeotrop ini sering disebut juga constant boiling mixture karena komposisinya yang senantiasa tetap jika campuran tersebut dididihkan. Untuk lebih jelasnya, perhatikan ilustrasi berikut :

Diagram Azeotrop

Titik A pada pada kurva merupakan boiling point campuran pada kondisi sebelum mencapai azeotrop. Campuran kemudian dididihkan dan uapnya dipisahkan dari sistem kesetimbangan uap cair (titik B). Uap ini kemudian didinginkan dan terkondensasi (titik C). Kondensat kemudian dididihkan, didinginkan, dan seterusnya hingga mencapai titik azeotrop. Pada titik azeotrop, proses tidak dapat diteruskan karena komposisi campuran akan selalu tetap. Pada gambar di atas, titik azeotrop digambarkan sebagai pertemuan antara kurva saturated vapor dan saturated liquid. (ditandai dengan garis vertikal putus-putus)

Bagaimana? Cukup jelas bukan? Secara logis, hasil distilasi biasa tidak akan pernah bisa melebihi komposisi azeotropnya. Lalu, adakah trik engineering tertentu yang dapat dilakukan untuk mengakali keadaan alamiah tersebut? Nah, kita akan membahas contoh kasus pemisahan campuran azeotrop propanol-ethyl acetate.

PFD Diagram: Simulasi distilasi biner campuran azeotrop propanol-ethyl acetate dengan menggunakan HYSYS.

Dalam pemisahan campuran propanol-athyl acetate, digunakan metode pressure swing distillation. Prinsip yang digunakan pada metode ini yaitu pada tekanan yang berbeda, komposisi azeotrop suatu campuran akan berbeda pula. Berdasarkan prinsip tersebut, distilasi dilakukan bertahap menggunakan 2 kolom distilasi yang beroperasi pada tekanan yang berbeda. Kolom distilasi pertama memiliki tekanan operasi yang lebih tinggi dari kolom distilasi kedua. Produk bawah kolom pertama menghasilkan ethyl acetate murni sedangkan produk atasnya ialah campuran propanol-ethyl acetate yang komposisinya mendekati komposisi azeotropnya. Produk atas kolom pertama tersebut kemudian didistilasi kembali pada kolom yang bertekanan lebih rendah (kolom kedua). Produk bawah kolom kedua menghasilkan propanol murni sedangkan produk atasnya merupakan campuran propanol-ethyl acetate yang komposisinya mendekati komposisi azeotropnya. Berikut ini gambar kurva kesetimbangan uap cair campuran propanol-ethyl acetate pada tekanan tinggi dan rendah.

distilasi1

Dari gambar pertama dapat dilihat bahwa feed masuk kolom pada temperatur 108,2 C dengan komposisi propanol 0,33. Pada kolom pertama (P=2,8 atm), komposisi azeotrop yaitu sebesar 0,5 sehingga distilat yang diperoleh berkisar pada nilai tersebut sedangkan bottom yang diperoleh berupa ethyl acetate murni.

distilasi2

Untuk memperoleh propanol murni, distilat kemudian didistilasi lagi pada kolom kedua (P=1,25 atm). Distilat ini memasuki kolom kedua pada temperatur 82,6 C. Komposisi azeotrop pada kolom kedua yaitu 0,38 sehingga kandungan propanol pada distilat berkisar pada nilai tersebut. Bottom yang diperoleh pada kolom kedua ini berupa propanol murni. Bila Anda perhatikan, titik azeotrop campuran bergeser dari 0,5%-mol propanol menjadi 0,38%-mol propanol. (*nahh apa lagi coba yang berubah?? hehe.. temperatur operasi jelas berubah.. karena tekanan berubah, maka temperatur dan komposisi juga berubah.. ingat termodinamika?? hehehe..)

Jadi, dengan metode pressure swing distillation ini, dapat diperoleh propanol dan ethyl acetate dengan kemurnian yang tinggi. Dan untuk lebih mengoptimasi proses, distilat keluaran kolom 2 dapat direcycle dan dicampur dengan aliran umpan untuk didistilasi kembali. Nah, bagaimana? Apakah metode seperti demikian pernah terbesit di benak teman-teman? Nahh.. marilah kita lebih memperhatikan dosen-dosen yang sudah bersusah payah mengajari kita.. Hehehe

sumber: www.majarikanayakan.com

July 10, 2008 Posted by | All about Teknik Kimia | | 1 Comment

Thermal Cracking Process ( Proses Perengkahan Termal)

 Proses perengkahan thermal (thermal Cracking) adalah suatu proses pemecahan rantai hydrocarbon dari senyawa rantai panjang menjadi hydrocarbon dengan rantai yang lebih kecil melalui bantuan panas. Suatu proses perengkahan thermal bertujuan untuk mendapatkan fraksi minyak bumi dengan boiling range yang lebih rendah dari feed (umpannya). Dalam proses ini dihasilkan: gas, gasoline (naphtha), gas oil (diesel), residue atau coke. Feednya dapat berupa gas oil atau residue.
Setelah mengalami pemanasan awal dan ditampung dalam akumulator, proses pemanasan selanjutnya dilakukan dalam suatu furnace (dapur) sampai mencapai temperatur rengkahnya. Keluar dari furnace, minyak yang sudah pada suhu rengkah tadi dimasukkan dalam suatu soaker, yaitu suatu alat berbentuk drum tegak yang berguna untuk memperpanjang reaksi perengkahan yang terjadi. Selanjutnya hasil perengkahan dimasukkan kedalam suatu menara / kolom pemisah (fractionator) dimana berikutnya akan dipisahkan masing-masing fraksi yang dikehendaki. Ada juga bagian yang dikembalikan lagi untuk direngkah lebih lanjut yang disebut recycle stock. Selain menghasilkan produk BBM (bahan bakar minyak) dan gas, dalam proses perengkahan thermal juga dihasilkan cokes. Cokes yang diharapkan hanya terbentuk di dalam chamber (coke drum) dapat pula terbentuk di dinding tubes heater/furnace dan transfer line (pipa transfer). Cokes tersebut terbentuk sedikit demi sedikit dan pada akhirnya akan terakumulasi. Jika akumulasi sudah dianggap mengganggu jalannya operasi, maka unit perengkahan thermal tersebut harus dihentikan untuk proses penghilangan akumulasi cokes atau SAD (Steam Air Decoking). Untuk memperkirakan apakah akumulasi cokes sudah berlebihan dan mengganggu operasi atau belum biasanya dilihat dari tanda-tanda sbb :
  1. Penurunan tekanan antara inlet dan outlet furnace sampai tingkat maksimum tertentu.
  2. Tekanan soaker/reaction chamber yang makin tinggi sampai tingkat maksimum tertentu.
  3. Temperatur tube metal (tube skin) makin naik.

Pembersihan akumulasi cokes tersebut disamping secara proses (SAD), dapat juga dilakukan secara mekanis menggunakan pompa bertekanan tinggi (aquadyne/hammelmann). I. UNIT VISBREAKING Adapun alat utama dari unit ini adalah sebagai berikut : 1. FLASH CHAMBER Fungsi utama flash chamber adalah memisahkan residue dari recycle untuk menghindari coking dalam heater/furnace. Agar residue tidak overcracking, maka dapat dilakukan quenching dari inlet flash chamber agar tempeaturnya menjadi kurang lebih 450 degC saja. Kadang-kadang hal ini dihilangkan jika sudah dilengkapi dengan sistem washing di top column dari flash chamber, karena dianggap cukup membantu mendinginkan bottom temperature. Sistem washing ini mempunyai keuntungan antara lain :

  • Mencuci atau menahan residue yang akan ikut keatas bersama uap.
  • Residue tidak terlalu melekat dengan coke terutama sepanjang dinding chamber.

Bahan pencuci biasanya adalah sidecut yang dingin dari fractionator. Untuk mengurangi residence time dari residue didalam flash chamber, dibuat suatu bentuk leher yang memanjang pada bagian bottom dengan menjaga level kurang lebih 50%. Typical bottom temperature didalam first stage flash chamber adalah 425 degC dengan overhead temperature 390 degC. Sedangkansecond stage flash chamber bottom suhunya 400 degC dan overheadnya 296 degC. 2. REACTION CHAMBER Reaction Chamber membantu fungsi furnace agar tidak terlalu besar. Dalam reaction chamber proses perengkahan terjadi tanpa harus menambah panasan. Temperatur keluar furnace kira-kira 480 degC dan keluar reaction chamber akan turun menjadi kurang lebih 465 degC. Tekanan reaction chamber dijaga kurang lebih 16.2 kg/cm2g untuk menjaga agar semua material masih dalam fase liquid hingga pembentukan coke minimum. Reaction chamber juga membantu berfungsi sebagai surge chamber yang dapat menahan fluktuasi operasi. 3. PROCESS VARIABLE Seperti dijelaskan didepan bahwa visbreaker ini menghasilkan light dan haeavy fraction. Yang diutamakan sebenarnya bukan light fractionnya tetapi heavy heavy fractionnya diinginkan seminimum mungkin tetapi masih memenuhi spec fuel oil. Variabel-variabel utamanya adalah :

  • Charge stock properties
  • Cracking temperature
  • Residence time

Secara umum dapat dikatakan bahwa kenaikan baik temperatur maupun residence time maka visbreaking severity akan naik. Kenaikan dari severity of cracking akan menaikkan produksi gas dan gasoline dan mengurangi viscosity dari cracked residu. Feed stock dengan harga K rendah, hasil gas dan gasoline makin rendah, tetapi makin tinggi viscosity residuenya dan makin tinggi BS&W pada cracking temperature dan residence time tertentu. II. DELAYED COKING Proses delayed coking dikembangkan dalam rangka me-minimize residue yang dihasilkan dari pengolahan minyak mentah melalui thermal cracking yang lebih severe. Jadi pada dasarnya proses delayed coking adalah juga proses thermal cracking yang dilakukan pada temperatur yang relatif sangat tinggi. Sebagai feed untuk unit ini kebanyakan adalah vacuum residue (short residue) . Pada operasi sebelum adanya delayed coking unit, operasi thermal cracking dijaga sedemikian rupa sehingga tidak akan terbentuk coke dalam heater/furnace. Namun dengan berkembangnya teknologi dan semakin meningkatnya kebutuhan oil product, telah dapat dikembangkan suatu proses dimana pada pemanasan residue sampai temeperatur yang tinggi didalam heater/furnace tetapi coke tetap tidak terbentuk didalam heater/furnace tubes. Hal ini dilakukan dengan memberikan velocity yang tinggi (residence time yang minimum) di dalam heater dan menambah drum/chamber di outlet heater untuk tempat terjadinya coking, sehinga proses ini kemudian disebut “Delayed coking”. Dari segi reaksi kimiawi sebenarnya tidak berbeda dengan reaksi didalam proses thermal cracking yang lain, hanya disini sebagai salah satu produk akhir adalah carbon (coke). Coke dalam kenyataannya masih mengandung sejumlah volatile matter (VM) atau Hydrocarbon (HC) dengan boiling point tinggi. Untuk menghilangkan atau mengurangi kandungan volatile matter didalamnya, coke dipanasi lebih lanjut sampai 2000 – 2300 degF didalam suatu tanur/kiln yang berputar (Unit Calciner). Telah banyak kilang-kilang didunia yang memiliki unit delayed coking baik dengan tujuan untuk memproduksi calcined coke maupun dalam rangka maximizing oil products. Produk yang lain seperti unsaturated LPG, naphtha, gas oil kemudian diproses lebih lanjut untuk mendapatkan produk akhir yang on-spec. Selanjutnya naphtha diolah lebih lanjut di NHDT (Naphtha Hydrotreater), gas oil di proses di Hydrocracker. 1. DISKRIPSI PROSES Umpan vacuum residue yang berasal dari bottom vacuum column pertama-tama dimasukkan kedalam fractionator pada tray ke 2 sampai ke 4 dari bawah. Tujuannya adalah :

  • Untuk mendinginkan uap hydrocarbon yang datang dari coke chamber ke fractionator untuk mencegah terbentuknya coke didalamnya dan sekaligus untuk mengkondensasikan sebagian heavy oil yang akan di-recycle.
  • Adanya lighter material didalam vacuum residue feed sudah dapat stripped out.
  • Untuk preheating feed.

Fresh feed yang telah bercampur dengan heavy oil yang condenser di bottom factionator dipompakan kedalam coker heater yang kemudian masuk kedalam salah satu dari dua coke chamber (drum). Untuk mengontrol velocity dan mencegah terbentuknya deposit coke didalam tube diinjeksikan steam kedalam tube heater. Sejumlah tertentu dari material yang tidak menguap dalam fluida yang keluar dari heater akan tinggal didalam coke drum dan oleh karena adanya efek temperatur dan residence time akan menyebabkan terbentuknya coke. Uap yang keluar dari puncak coke drum akan dialirkan ke bottom fractionator. Dalam uap yang keluar dari coke drum, mengandung steam danhasil cracking yang terdiri dari gas, naphtha, gas oil. Uap akan mengalir ke top column melalui quench tray, kemudian produk gas oil akan ditarik dari tray diatas feed tray. Sebagaimana dalam crude fractionator, dalam delayed coker fractionator juga dilengkapidengan sistem hot dan cold reflux dengan maksud selain untuk memperbaiki distilasi juga untuk memanfaatkan panas yang didapat dalam column sehingga dapat digunakan untuk preheating dll. Akibatnya yang juga merupakan suatu keuntungan, bahwa beban overhead condensor akan lebih kecil. Untuk menarik naphtha biasa dilakukan pada 8-10 tray diatas gas oil draw-off. 2. OPERASI PENGAMBILAN COKE. Bila coke drum yang in-service (coking) telah penuh dengan coke, aliran feed kemudian dipindahkan (switch) ke drum yang telah kosong dengan mengoperasikan three way valve (switching valve), sementara itu drum yang telah penuh dengan coke diisolate untuk operasi pengambilan/pembongkaran coke. Mula-mula dialirkan steam untuk menghilangkan uap hydrocarbons yang masih ada didalam drum, kemudian didinginkan dengan mengisi air secara pelan-pelan sesuai dengan cooling rate yang dianjurkan agar tidak mengalami shock cooling. Pelaksanaan pengambilan/ pembongkaran coke (decoking), dimulai dengan membuka coke chamber, kemudian dengan mechanical drill atau hydraulic system yang menggunakan air bertekanan tinggi. Dengan sistem mechanical & water jet sedikit demi sedikit coke yang mengisi hampir seluruh coke drum akan terpotong masuk kedalam coke pit atau gerobag yang memang telah disediakan untuk selanjutnya diangkut ke storage. 3. SIFAT FISIS DAN PENGGUNAAN COKE Kebanyakan coke dihasilkan sebagai bahan yang keras, porous, bentuknya tidak teratur dengan ukuran dari 20 inch sampai kecil seperti debu. Coke type ini dikenal sebagai sponge coke. Penggunaan dari coke jenis ini adalah untuk :

  • Pembuatan electrode untuk digunakan dalam electrical furnace dalam pabrik Titanium oxide, baja.
  • Pembuatan anode untuk cell electrolytic dipabrik alumina.
  • Digunakan sebagai sumber carbon didalam pembuatan elemen phosphor, calcium carbide, silica carbide.
  • Pembuatan graphite.

Typical analysis dari Petroleum sponge coke adalah sebagai berikut : Wt % Wt % (Dari Delayed Coker) (Setelah Calcining) Air 2 – 4 nil Volatile matter 7 – 10 2 – 3 Fixed carbon 85 – 91 95 Kandungan sulfur 0.5 – 1.0 1 – 2 Kandungan sulfur didalam petroleum coke yang dihasilkan adalah bervariasi tergantung pada sulfur yang ada didalam feed stock. Biasanya antara 0.3- 1.5 wt % tapi kadang-kadang juga bisa mencapai 6%. Selain sponge coke, dikenal pula jenis coke lain yang disebut needle coke. Needle coke dihasilkan dari feed stock yang mengandung aromatic yang sangat tinggi. Needle coke ini lebih disenangi daripada sponge coke untuk digunakan sebagai electrode karena ia mempunyai electrical resistively dan coeficient thermal expansion yang lebih rendah sehingga tidak mudah berubah bentuk dan tidak boros pemakaiannya. 4. OPERASI DELAYED COKER Sebagaimana telah disinggung dalam decoking, coke drum diisi dan dikosongkan atas dasar suatu time cycle tertentu, sedang fraksinator dioperasikan secara kontinyu untuk memproduksi LPG, coker naphtha dan coker gas oil. Paling sedikit harus ada dua coke drum, namun ada pula yang lebih seperti di UP II Dumai yang mempunyai empat coke drum dengan pembagian : dua diisi / in operation (coking) dan dua yang lain dikosongkan (decoking) Typical waktu pengoperasian dari coke drum adalah sbb : Operasi Waktu (jam) Pengisian dengan coke 24 Memindah (switch) dan steaming out 03 Pendinginan (cooling down) 03 Drain 02 Buka tutup dan decoking 05 Tutup kembali dan test 02 Pemasangan kembali 07 Spare time 02 48 Operating variable dalam delayed coker antara lain adalah :

  • Temperatur outlet heater
  • Tekanan fractionating tower
  • Temperatur uap ex coke drum yang masuk fractionator
  • Free carbon content dalam feed.

Semakin tinggi temperatur yang keluar heater akan menaikkan proses cracking dan reaksi coking sehingga akan menaikkan pula jumlah gas dan coker naptha yang dihasilkan dan sebaliknya produksi coker gas oil yang berkurang. Menaikkan tekanan di fractionator mempunyai pengaruh yang sama dengan menaikkan temperatur outlet heater, karena dengan kenaikan tekanan di fractionator akan menambah jumlah vapor yang terkondensasi termasuk gas oil yang akan dikembalikan sehingga di-recycle bersama feed ke heater. Temperatur dari uap hydrocarbon ex coke drum yang semakin tinggi akan menaikkan end point dari produk coker gas oil sehingga jumlah gas oil yang direcycle menjadi berkurang akibatnya produksi coke akan berkurang pula. Dalam operasi delayed coker secara umum dapat dinyatakan bahwa semakin banyak gas oil yang direcycle akan menaikkan cracking yang selanjutnya akan menghasilkan gas, coker naphtha, dan coke yang lebih banyak dan menurunnya produksi coker gas oil. Refferences :

  1. “How to predict coker yield”; Castiglioni,B.P.; Hydrocarbon Processing, September 1983.
  2. UOP Operating Manual , “Delayed Coking Unit”

sumber: http://processengineers.blogspot.com

July 10, 2008 Posted by | All about Teknik Kimia | | Leave a comment

Abu Terbang Batubara Sebagai Adsorben

Penggunaan abu terbang batubara sebagai campuran beton untuk bangunan California Academy of Science.click photo to enlarge

Produksi abu terbang batubara (fly ash) didunia pada tahun 2000 diperkirakan berjumlah 349 milyar ton[1]. Penyumbang produksi abu terbang batubara terbesar adalah sektor pembangkit listrik. Produksi abu terbang dari pembangkit listrik di Indonesia terus meningkat, pada tahun 2000 jumlahnya mencapai 1,66 milyar ton dan diperkirakan mencapai 2 milyar ton pada tahun 2006[2].

Abu terbang batubara umumnya dibuang di landfill atau ditumpuk begitu saja di dalam area industri. Penumpukkan abu terbang batubara ini menimbulkan masalah bagi lingkungan. Berbagai penelitian mengenai pemanfaatan abu terbang batubara sedang dilakukan untuk meningkatkan nilai ekonomisnya serta mengurangi dampak buruknya terhadap lingkungan. Saat ini umumnya abu terbang batubara digunakan dalam pabrik semen sebagai salah satu bahan campuran pembuat beton. Selain itu, sebenarnya abu terbang batubara memiliki berbagai kegunaan yang amat beragam:

  1. Penyusun beton untuk jalan dan bendungan
  2. Penimbun lahan bekas pertambangan
  3. Recovery magnetit, cenosphere, dan karbon
  4. Bahan baku keramik, gelas, batu bata, dan refraktori
  5. Bahan penggosok (polisher)
  6. Filler aspal, plastik, dan kertas
  7. Pengganti dan bahan baku semen
  8. Aditif dalam pengolahan limbah (waste stabilization)
  9. Konversi menjadi zeolit dan adsorben

Konversi abu terbang batubara menjadi zeolit dan adsorben merupakan contoh pemanfaatan efektif dari abu terbang batubara. Keuntungan adsorben berbahan baku abu terbang batubara adalah biayanya murah. Selain itu, adsorben ini dapat digunakan baik untuk pengolahan limbah gas maupun limbah cair. Adsorben ini dapat digunakan dalam penyisihan logam berat dan senyawa organik pada pengolahan limbah. Abu terbang batubara dapat dipakai secara langsung sebagai adsorben atau dapat juga melalui perlakuan kimia dan fisik tertentu sebelum menjadi adsorben. Zeolit yang disintesis dari abu terbang batubara banyak digunakan untuk keperluan pertanian. Zeolit banyak dikonsumsi dalam pemurnian air, pengolahan tanah, dll. Zeolit dibuat dengan cara mengkonversi aluminosilikat yang terdapat pada abu terbang batubara menjadi kristal zeolit melalui reaksi hidrotermal.

Sifat Fisika dan Kimia Abu Terbang

Komponen utama dari abu terbang batubara yang berasal dari pembangkit listrik adalah silika (SiO2), alumina, (Al2O3), dan besi oksida (Fe2O3), sisanya adalah karbon, kalsium, magnesium, dan belerang. Rumus empiris abu terbang batubara ialah: Si1.0Al0.45Ca0.51Na0.047Fe0.039Mg0.020K0.013Ti0.011

Tabel 1. Komposisi kimia abu terbang batubara 
Komponen Bituminous Sub-
bituminous
Lignite
SiO2 20-60% 40-60% 15-45%
Al2O3 5-35% 20-30% 10-25%
Fe2O3 10-40% 4-10% 4-15%
CaO 1-12% 5-30% 15-40%
MgO 0-5% 1-6% 3-10%
SO3 0-4% 0-2% 0-10%
Na2O 0-4% 0-2% 0-6%
K2O 0-3% 0-4% 0-4%
LOI 0-15% 0-3% 0-5%

Sifat kimia dari abu terbang batubara dipengaruhi oleh jenis batubara yang dibakar dan teknik penyimpanan serta penanganannya. Pembakaran batubara lignit dan sub-bituminous menghasilkan abu terbang dengan kalsium dan magnesium oksida lebih banyak daripada bituminus. Namun, memiliki kandungan silika, alumina, dan karbon yang lebih sedikit daripada bituminous. Kandungan karbon dalam abu terbang diukur dengan menggunakan Loss On Ignition Method (LOI).

Abu terbang batubara terdiri dari butiran halus yang umumnya berbentuk bola padat atau berongga. Ukuran partikel abu terbang hasil pembakaran batubara bituminous lebih kecil dari 0,075mm[4]. Kerapatan abu terbang berkisar antara 2100 sampai 3000 kg/m3 dan luas area spesifiknya (diukur berdasarkan metode permeabilitas udara Blaine) antara 170 sampai 1000 m2/kg[4].

Adsorben untuk Penyisihan Polutan pada Gas Buang

Abu terbang dapat dimanfaatkan sebagai adsorben untuk penyisihan polutan pada gas buang prose pembakaran yang berpotensi untuk merusak lingkungan seperti gas sulfur oksida yang menyebabkan hujam asam, gas nitrogen oksida yang menyebabkan pemanasan global, dan merkuri (Hg) yang berbahaya bagi makhluk hidup.

  1. Penyisihan SOx
    Industri-industri berusaha untuk mengurangi emisi SOx dengan cara memasang unit flue gas desulphurization (FGD) dan unit scrubber. Dua unit tersebut banyak digunakan karena memiliki efisiensi yang tinggi terhadap proses de-SOx. Namun, dua unit tersebut membutuhkan air dalam jumlah yang besar dan akibatnya menghasilkan limbah cair yang banyak. FGD tipe kering tidak membutuhkan pengolahan limbah cair tetapi tipe ini membutuhkan adsorben dalam jumlah besar untuk mencapai efisiensi de-SOxyang tinggi. Abu terbang batubara lebih dipilih untuk digunakan sebagai adsorben pada FGD tipe kering dalam skala besar dibandingkan karbon aktif karena biayanya lebih murah. Dua tipe abu terbang batubara yang berasal dari fluidized bed combustion (FBC) dan pulverized coal combustion (PCC) telah diuji coba untuk menyisihkan SO2 dengan bantuan kalsium hidroksida (CaOH2)[2]. Hasil uji coba tersebut adalah konversi CaO menjadi CaSO4 mencapai 92-100% dalam pereaksian selama 1 jam.
  2. Penyisihan NOx
    Abu terbang batubara juga memiliki potensi sebagai adsorben untuk menyisihkan NOx dari aliran gas buang. Emisi NOx diserap oleh karbon tidak terbakar yang terdapat di dalam abu terbang batubara. Partikel karbon tersebut dapat juga diaktivasi untuk meningkatkan kinerja penyerapan NOx. Penelitian yang dilakukan oleh Rubel et al menunjukkan bahwa perbandingan kapasitas penyerapan NOx karbon dari abu terbang batubara yang diaktivasi dengan karbon aktif komersial adalah 1/3[1].
  3. Penyisihan merkuri (Hg)
    Emisi merkuri yang dihasilkan dari pembakaran batubara pada unit boiler mendapat perhatian yang besar dari pemerhati lingkungan karena berpotensi merusak lingkungan dan menjadi ancaman bagi kesehatan makhluk hidup. Abu terbang batubara dapat dijadikan salah satu adsorben untuk mengontrol emisi merkuri dengan bantuan filter dari bahan kain misalnya dengan memakai baghouse filter. Peneliti Serre dan Silcox menyatakan bahwa karbon yang tidak terbakar di dalam abu terbang batubara dapat digunakan sebagai substitusi karbon aktif yang murah dan efektif. Abu terbang batubara dapat diinjeksikan secara berkala di dalam baghouse filter yang digunakan untuk menyisihkan merkuri. Luas permukaan dan struktur abu terbang batubara yang berpori merupakan dua hal yang menyebabkan abu terbang batubara berpotensi untuk menyerap emisi merkuri.
  4. Penyisihan gas-gas organik
    Selain dapat digunakan untuk menyisihkan tiga polutan diatas, abu terbang batubara juga dapat digunakan untuk menyisihkan gas organik. Penelitian yang dilakukan oleh Peloso, menunjukkan bahwa abu terbang batubara yang telah melewati proses aktivasi secara termal dapat menyisihkan uap toluene.

Adsorben untuk Penyisihan Ion Logam Berat pada Limbah Cair

Logam berat adalah polutan yang memberikan dampak signifikan bagi kesehatan makhluk hidup. Proses penghilangan logam berat dari limbah cair sudah dilakukan dengan beberapa cara seperti, presipitasi menggunakan bahan kimia, ekstraksi menggunakan pelarut tertentu, pertukaran ion, reverse osmosis, atau adsorpsi. Proses adsorpsi dengan pilihan jenis adsorben yang tepat jika dibandingkan dengan proses lainnya merupakan proses yang sederhana tapi efektif dalam penghilangan logam berat dari limbah cair.


Scanning Electron Microscopy abu terbang batubara.

Logam berat utama yang diteliti untuk diserap oleh abu terbang batubara adalah Pb, Ni, Cr, Cu, Cd, dan Hg. Penghilangan logam berat dari limbah cair melibatkan dua proses yaitu presipitasi dan adsorpsi. Proses presipitasi melibatkan kalsium hidroksida sedangkan proses adsorpsi melibatkan silika alumina. Kedua senyawa tersebut terkandung di dalam abu terbang batubara.

Peneliti bernama Bayat meneliti penghilangan logam Zn2+, Cd2+, Ni2+, Cu2+, dan Cr6+ menggunakan abu terbang batubara yang berasal dari batubara jenis lignit. Selain itu, Bayat juga membandingkannya hasil penghilangan logam berat tersebut dengan karbon aktif komersial. Hasil dari penelitian tersebut menunjukkan bahwa abu terbang batubara dapat menghilangkan logam berat seefektif karbon aktif pada kondisi tertentu. Proses adsorpsi maksimum terjadi pada kondisi pH 7-7.5[5].

Abu terbang batubara juga merupakan adsorben yang baik untuk menghilangkan Cs. Abu terbang batubara juga dikonversi menjadi zeolit melalui proses hidrotermal dan digunakan untuk menghilangkan logam Cs, timbal, dan kadmium. Kapasitas adsorpsi zeolit abu terbang batubara untuk timbal sebesar 70.58 mg/g dan 95.6 mg/g untuk kadmium dengan konsentrasi awal kedua logam sebesar 100 mg/L.

Konversi Abu Terbang Batubara Menjadi Zeolit

Zeolit pada dasarnya merupakan padatan aluminium-silikat yang memiliki struktur yang berpori. Zeolit alam biasanya terbentuk dari batu dan abu gunung berapi yang beraksi dengan logam alkali tanah pada air tanah. Zeolit murni hampir tidak dapat ditemukan di alam. Biasanya terdapat pengotor seperti logam natrium dan kalsium. Abu terbang batubara memiliki potensi dikonversi menjadi zeolit jika memiliki kandungan alumina-silika yang cukup tinggi dan kandungan karbon yang rendah. Zeolit memiliki beberapa aplikasi industrial yaitu[6]:

  • Pertukaran ion : Penukar ion Na+/K+/Ca2+
  • Adsorpsi pengotor gas : Adsorpsi selektif berdasarkan molekul gas spesifik
  • Adsorpsi pengotor air : Adsorpsi reversibel air tanpa ada perubahan sifat fisik dan kimia dari zeolit itu sendiri

Jenis zeolit yang dihasilkan dari abu terbang bergantung pada komposisi awal dan metode konversinya. Metode yang umum digunakan adalah hydrothermal alkali treatment yaitu memanaskan campuran abu terbang dengan larutan alkali (KOH, NaOH, dsb.) dalam variasi waktu reaksi, suhu, dan tekanan tertentu[6].

Tantangan Masa Depan

Abu terbang pada masa kini dipandang sebagai limbah pembakaran batubara. Penanganan abu terbang masih terbatas pada penimbunan di lahan kosong. Hal ini berpotensi bahaya bagi lingkungan dan masyarakat sekitar seperti, logam-logam dalam abu terbang terekstrak dan terbawa ke perairan, abu terbang tertiup angin sehingga mengganggu pernafasan. Sudut pandang terhadap abu terbang harus dirubah, abu terbang adalah bahan baku potensial yang dapat digunakan sebagai adsorben murah. Beberapa investigasi menyimpulkan bahwa abu terbang memiliki kapasitas adsorpsi yang baik untuk menyerap gas organik, ion logam berat, gas polutan. Modifikasi sifat fisik dan kimia perlu dilakukan untuk meningkatkan kapasitas adsorpsi.

Abu terbang (fly ash) batubara.

Berdasarkan paparan diatas sudah terbukti bahwa abu terbang batubara memiliki potensi yang besar sebagai adsorben yang ramah lingkungan. Abu terbang batubara dapat menjadi alternatif pengganti karbon aktif dan zeolit. Tetapi, kapasitas adsorpsi abu terbang sangat bergantung pada asal dan perlakuan pasca pembakaran batubara. Sampai sekarang, pemanfaatan abu terbang masih dilakukan dalam skala kecil karena umumnya kapasitas adsorpsinya masih rendah. Modifikasi sifat fisik dan kimia dapat meningkatkan kapasitas adsorpsi abu terbang. Peningkatan kapasitas adsorpsi dapat membuat adsorben dari abu terbang batubara kompetitif bila dibandingkan dengan karbon aktif dan zeolit[1].

Konversi abu terbang menjadi zeolit adalah salah satu alternatif yang sangat potensial meningkatkan nilai ekonomis abu terbang. Karbon sisa pembakaran dalam abu terbang memiliki kualitas setara karbon aktif sehingga investigasi mengenai pemisahan karbon sisa berpotensi meningkatkan nilai ekonomis dari abu terbang. Zeolit memiliki kegunaan yang banyak seperti adsorben, resin penukar ion, molecular sieves, dll. Zeolit memilki kapasitas adsorpsi yang jauh lebih tinggi dibandingkan dengan abu terbang sehingga konversi abu terbang menjadi zeolit menjadi alternatif yang menjanjikan dimasa depan (Queroll, 2006). Penelitian di masa depan diharapkan dapat membuat konversi abu terbang menjadi zeolit komersil pada skala industri.

Referensi:
[1] S.Wang, H. Wu , H, Journal of Hazardous Materials (2006).
[2] Indonesia Power, PLTU Suralaya, (2002).
[3] Putu Astari Merati, Utilization of fly ash from power plant for removal of dyes, (2006).
[4] Yoga Pratama, Heri T. Putranto, Coal fly ash conversion to zeolite for removal of chromium and nickel from wastewaters, (2007).
[5] B. Bayat, Journal of Hazardous Materials, Vol. 95(3)275-290,(2002).
[6] X.Querol, et al, Int. J. Coal Geol. 50, 413-423, (2002).
[7] D. Mohan, et al, Ind. Eng. Chem. Res. 41, 3688-3695, (2002).

sumber: www.majarikanayakan.com

July 10, 2008 Posted by | All about Teknik Kimia | | 1 Comment

Pembakaran Batubara dengan O2/CO2

Saat ini, konsumsi energi dunia, terutama dari bahan bakar fosil (minyak bumi, gas alam, dan batubara), meningkat secara besar-besaran dan tak terhindarkan. Teknologi pemanfaatan dan eksplorasi bahan bakar fosil yang sudah mapan menyebabkan energi dapat dihasilkan dengan proses yang terjamin dengan harga yang relatif murah. Hal inilah yang menyebabkan bahan bakar fosil banyak disukai walaupun dewasa ini penelitian mengenai bahan bakar terbarukan terus digalakkan dan pemanfaatannya mulai mendapatkan perhatian publik. Bahan bakar fosil tetap dipercaya sebagai sumber energi dunia setidaknya untuk 50 tahun ke depan. Untuk itu, peningkatan efisiensi utilisasi bahan bakar fosil harus terus dilakukan dengan terus memperhatikan faktor lingkungan.

Salah satu jenis bahan bakar fosil ialah batubara. Dibandingkan bahan bakar fosil lainnya, batubara mempunyai beberapa keunggulan, di antaranya:

  1. Batubara yang siap diekploitasi secara ekonomis terdapat dalam jumlah banyak.
  2. Batubara terdistribusi secara merata di seluruh dunia.
  3. Jumlah yang melimpah membuat batubara menjadi bahan bakar fosil yang paling lama dapat menyokong kebutuhan energi dunia.

Namun, batubara juga memiliki kelemahan yaitu:

  1. Identik sebagai bahan bakar yang kotor dan tidak ramah lingkungan karena komposisinya yang terdiri dari C, H, O, N, S, dan abu.
  2. Kandungan C per mol batubara jauh lebih besar dibandingkan bahan bakar fosil lainnya sehingga pengeluaran CO2 dari batubara jauh lebih banyak. Selain itu, kandungan S dan N batubara bisa terlepas sebagai SOx dan NOx dan menyebabkan terjadinya hujan asam.

Oleh karena itu, perlu dikembangkan metode baru dalam pemanfaatan batubara agar dapat meredam isu-isu lingkungan yang mungkin terjadi.

Salah satu metode yang dapat menjadi alternatif ialah pembakaran batubara menggunakan campuran O2/CO2. Keunggulan utama dari metode ini yaitu adanya daur ulang aliran gas keluaran sehingga kandungan CO2 pada aliran tersebut sangat tinggi, mencapai 95%. Dengan kandungan CO2 yang tinggi, proses pemisahan karbondioksida menjadi lebih mudah dan ekonomis dibandingkan pada pembakaran batubara konvensional (menggunakan udara) yang hanya menghasilkan CO2 sekitar 13% pada gas keluaran. Gas keluaran dengan kandungan CO2 sampai 95% bahkan dapat langsung digunakan untuk proses oil enhanced recovery (EOR) [2]. Pembakaran batubara menggunakan campuran O2/CO2 ditampilkan pada gambar di bawah ini.

Gambar 1. Diagram alir proses pembakaran batubara dengan menggunakan campuran gas O2/CO2

Batubara (fuel) dibakar dalam sebuah combustion chamber dengan menggunakan campuran gas oksigen dan karbondioksida. Oksigen didapatkan dari proses pemisahan nitrogen dan oksigen dari udara dalam sebuah Air Separation Unit. Karbondioksida sendiri merupakan gas hasil pembakaran batubara yang kembali dialirkan ke dalam combustion chamber. Aliran recycle karbondioksida ini menyebabkan peningkatan konsentrasi gas karbondioksida yang sangat signifikan di aliran keluaran sehingga memudahkan proses pemisahan karbondioksida itu sendiri. Pemisahan karbondioksida dapat diselenggarakan menggunakan metode konvensional seperti menggunakan CO2 absorber maupun metoda terkini seperti pemisahan dengan membran. Tingginya konsentrasi CO2 di aliran umpan absorber atau membran akan memudahkan proses pemisahan sehingga spesifikasi alat pemisah tidak terlalu memakan biaya besar.

Selain kandungan CO2 gas keluaran yang tinggi, metode ini juga mempunyai efisiensi pembakaran karbon yang tinggi. Hasil penelitian Liu (2005) menunjukkan bahwa pembakaran batubara menggunakan media O2/CO2 menghasilkan efisiensi pembakaran karbon yang lebih tinggi dibandingkan pembakaran batubara konvensional. Hal itu dibuktikan dari kandungan karbon baik pada fly ash maupun bottom ash yang jauh lebih sedikit.

Sumber:
[1] www.europeanenergyforum.eu
[2] Liu, Hao, et all, Comparison of pulverized coal combustion in air and in mixture of O2/CO2, Fuel 84 (2005) 833 – 840.

sumber: www.majarikanayakan.com

July 10, 2008 Posted by | All about Teknik Kimia | | Leave a comment

Teknologi Pengolahan Air Limbah

Pembuangan air limbah baik yang bersumber dari kegiatan domestik (rumah tangga) maupun industri ke badan air dapat menyebabkan pencemaran lingkungan apabila kualitas air limbah tidak memenuhi baku mutu limbah. Sebagai contoh, mari kita lihat Kota Jakarta. Jakarta merupakan sebuah ibukota yang amat padat sehingga letak septic tank, cubluk (balong), dan pembuangan sampah berdekatan dengan sumber air tanah. Terdapat sebuah penelitian yang mengemukakan bahwa 285 sampel dari 636 titik sampel sumber air tanah telah tercemar oleh bakteri coli. Secara kimiawi, 75% dari sumber tersebut tidak memenuhi baku mutu air minum yang parameternya dinilai dari unsur nitrat, nitrit, besi, dan mangan.

Trickling Filter
Trickling filter. Sebuah trickling filter bed yang menggunakan plastic media.

Bagaimana dengan air limbah industri? Dalam kegiatan industri, air limbah akan mengandung zat-zat/kontaminan yang dihasilkan dari sisa bahan baku, sisa pelarut atau bahan aditif, produk terbuang atau gagal, pencucian dan pembilasan peralatan, blowdown beberapa peralatan seperti kettle boiler dan sistem air pendingin, serta sanitary wastes. Agar dapat memenuhi baku mutu, industri harus menerapkan prinsip pengendalin limbah secara cermat dan terpadu baik di dalam proses produksi (in-pipe pollution prevention) dan setelah proses produksi (end-pipe pollution prevention). Pengendalian dalam proses produksi bertujuan untuk meminimalkan volume limbah yang ditimbulkan, juga konsentrasi dan toksisitas kontaminannya. Sedangkan pengendalian setelah proses produksi dimaksudkan untuk menurunkan kadar bahan peencemar sehingga pada akhirnya air tersebut memenuhi baku mutu yang sudah ditetapkan.

Parameter Konsentrasi (mg/L)  
COD 100 – 300  
BOD 50 – 150  
Minyak nabati 5 – 10  
Minyak mineral 10 – 50  
Zat padat tersuspensi (TSS) 200 – 400  
pH 6.0 – 9.0  
Temperatur 38 – 40 [oC]  
Ammonia bebas (NH3) 1.0 – 5.0  
Nitrat (NO3-N) 20 – 30  
Senyawa aktif biru metilen 5.0 – 10  
Sulfida (H2S) 0.05 – 0.1  
Fenol 0.5 – 1.0  
Sianida (CN) 0.05 – 0.5  
Batasan Air Limbah untuk Industri
Kepmen LH No. KEP-51/MENLH/10/1995

Namun walaupun begitu, masalah air limbah tidak sesederhana yang dibayangkan karena pengolahan air limbah memerlukan biaya investasi yang besar dan biaya operasi yang tidak sedikit. Untuk itu, pengolahan air limbah harus dilakukan dengan cermat, dimulai dari perencanaan yang teliti, pelaksanaan pembangunan fasilitas instalasi pengolahan air limbah (IPAL) atau unit pengolahan limbah (UPL) yang benar, serta pengoperasian yang cermat.

Dalam pengolahan air limbah itu sendiri, terdapat beberapa parameter kualitas yang digunakan. Parameter kualitas air limbah dapat dikelompokkan menjadi tiga, yaitu parameter organik, karakteristik fisik, dan kontaminan spesifik. Parameter organik merupakan ukuran jumlah zat organik yang terdapat dalam limbah. Parameter ini terdiri dari total organic carbon (TOC), chemical oxygen demand (COD), biochemical oxygen demand (BOD), minyak dan lemak (O&G), dan total petrolum hydrocarbons (TPH). Karakteristik fisik dalam air limbah dapat dilihat dari parameter total suspended solids (TSS), pH, temperatur, warna, bau, dan potensial reduksi. Sedangkan kontaminan spesifik dalam air limbah dapat berupa senyawa organik atau inorganik.

Teknologi Pengolahan Air Limbah

Tujuan utama pengolahan air limbah ialah untuk mengurai kandungan bahan pencemar di dalam air terutama senyawa organik, padatan tersuspensi, mikroba patogen, dan senyawa organik yang tidak dapat diuraikan oleh mikroorganisme yang terdapat di alam. Pengolahan air limbah tersebut dapat dibagi menjadi 5 (lima) tahap:

  1. Pengolahan Awal (Pretreatment)
    Tahap pengolahan ini melibatkan proses fisik yang bertujuan untuk menghilangkan padatan tersuspensi dan minyak dalam aliran air limbah. Beberapa proses pengolahan yang berlangsung pada tahap ini ialah screen and grit removal, equalization and storage, serta oil separation.
  2. Pengolahan Tahap Pertama (Primary Treatment)
    Pada dasarnya, pengolahan tahap pertama ini masih memiliki tujuan yang sama dengan pengolahan awal. Letak perbedaannya ialah pada proses yang berlangsung. Proses yang terjadi pada pengolahan tahap pertama ialah neutralization, chemical addition and coagulation, flotation, sedimentation, dan filtration.
  3. Pengolahan Tahap Kedua (Secondary Treatment)
    Pengolahan tahap kedua dirancang untuk menghilangkan zat-zat terlarut dari air limbah yang tidak dapat dihilangkan dengan proses fisik biasa. Peralatan pengolahan yang umum digunakan pada pengolahan tahap ini ialah activated sludge, anaerobic lagoon, tricking filter, aerated lagoon, stabilization basin, rotating biological contactor, serta anaerobic contactor and filter.
  4. Pengolahan Tahap Ketiga (Tertiary Treatment)
    Proses-proses yang terlibat dalam pengolahan air limbah tahap ketiga ialah coagulation and sedimentation, filtration, carbon adsorption, ion exchange, membrane separation, serta thickening gravity or flotation.
  5. Pengolahan Lumpur (Sludge Treatment)
    Lumpur yang terbentuk sebagai hasil keempat tahap pengolahan sebelumnya kemudian diolah kembali melalui proses digestion or wet combustion, pressure filtration, vacuum filtration, centrifugation, lagooning or drying bed, incineration, atau landfill.

Pemilihan Teknologi

Pemilihan proses yang tepat didahului dengan mengelompokkan karakteristik kontaminan dalam air limbah dengan menggunakan indikator parameter yang sudah ditampilkan di tabel di atas. Setelah kontaminan dikarakterisasikan, diadakan pertimbangan secara detail mengenai aspek ekonomi, aspek teknis, keamanan, kehandalan, dan kemudahan peoperasian. Pada akhirnya, teknologi yang dipilih haruslah teknologi yang tepat guna sesuai dengan karakteristik limbah yang akan diolah. Setelah pertimbangan-pertimbangan detail, perlu juga dilakukan studi kelayakan atau bahkan percobaan skala laboratorium yang bertujuan untuk:

  1. Memastikan bahwa teknologi yang dipilih terdiri dari proses-proses yang sesuai dengan karakteristik limbah yang akan diolah.
  2. Mengembangkan dan mengumpulkan data yang diperlukan untuk menentukan efisiensi pengolahan yang diharapkan.
  3. Menyediakan informasi teknik dan ekonomi yang diperlukan untuk penerapan skala sebenarnya.
Sedimentation
Sedimentation. Sebuah primary sedimentation tank di sebuah unit pengolahan limbah domestik. Sedimentation tank merupakan salah satu unit pengolahan limbah yang sangat umum digunakan.

Bottomline, perlu kita semua sadari bahwa limbah tetaplah limbah. Solusi terbaik dari pengolahan limbah pada dasarnya ialah menghilangkan limbah itu sendiri. Produksi bersih (cleaner production) yang bertujuan untuk mencegah, mengurangi, dan menghilangkan terbentuknya limbah langsung pada sumbernya di seluruh bagian-bagian proses dapat dicapai dengan penerapan kebijaksanaan pencegahan, penguasaan teknologi bersih, serta perubahan mendasar pada sikap dan perilaku manajemen. Treatment versus Prevention? Mana yang menurut teman-teman lebih baik?? Saya yakin kita semua tahu jawabannya. Reduce, recyle, and reuse.

Referensi: Pengelolaan Limbah Industri – Prof. Tjandra Setiadi, Wikipedia

sumber www.majarikanayakan.com

July 10, 2008 Posted by | All about Teknik Kimia | | 3 Comments

Pengendalian Proses (Bagian 2)

Pabrik kimia merupakan susunan/rangkaian berbagai unit pengolahan yang terintegrasi satu sama lain secara sistematik dan rasional. Tujuan pengoperasian pabrik kimia secara keseluruhan adalah mengubah (mengkonversi) bahan baku menjadi produk yang lebih bernilai guna. Dalam pengoperasiannya pabrik akan selalu mengalami gangguan (disturbance) dari lingkungan eksternal. Selama beroperasi, pabrik harus terus mempertimbangkan aspek keteknikan, keekonomisan, dan kondisi sosial agar tidak terlalu signifikan terpengaruh oleh perubahan-perubahan eksternal tersebut.

Artikel ini terbagi menjadi 3 bagian yang adalah sebagai berikut:

  1. Bagian 1: Pendahuluan, Sistem Pengendalian, Disain Elemen Pengendali Proses, Pendefinisian Tujuan Pengendalian, dan Pemilihan Variabel yang Harus Diukur.
  2. Bagian 2: Pemilihan Variabel yang Dimanipulasi, Pemilihan Konfigurasi Pengendalian, Perancangan Sistem Pengendali, Penggunaan Komputer Digital pada Pengendali Proses, dan Perangkat Keras Sistem Pengendali Proses.
  3. Bagian 3: Metode Tuning, Parameter Error, Contoh Kasus, dan Penggunaan MATLAB Simulink.

Pemilihan Variabel yang Dimanipulasi

Dalam proses kimia, umumnya terdapat beberapa variabel input yang dapat diatur dengan bebas. Untuk memilih variabel mana yang akan dimanipulasi, harus dipertimbangkan efek dari tindakan yang diambil terhadap kualitas pengendalian. Sebagai contoh pengendalian ketingguan cairan dalam reaktor, tangki, ataupun kolom distilasi dapat dilakukan dengan mengatur laju alir masuk dan laju alir keluar cairan.

Pemilihan Konfigurasi Pengendalian

Konfigurasi pengendalian merupakan suatu struktur informasi yang digunakan untuk mnghubungkan variabel pengukuran terhadap variabel yang akan dimanipulasi. Sebagai contoh pengendalian temperatur dan ketinggian cairan pada reaktor, kolom distilasi, mixer, dan alat lainnya memiliki beberapa alternatif konfigurasi sistem pengendali. Perbadaan-perbedaan yang dapat diamati pada sistem pengendali temperatur dan sistem pengendali ketinggian cairan terjadi karena (1) terdapat perbedaan variabel yang diukur, tetapi hasil pengukuran digunakan untuk memanipulasi variabel yang sama, atau (2) variabel yang diukur sama, tetapi hasil pengukuran tersebut digunakan untuk memanipulasi variabel yang berbeda.

Ada 3 tipe konfigurasi pengendalian, antara lain:

  1. Feedback control configuration
    Konfigurasi ini mengukur secara langsung variabel yang dikendalikan untuk mengatur harga variabel yang dimanipulasi. Tujuan pengendalian ini adalah mempertahankan variabel yang dikendalikan pada level yang diinginkan (set point). Sebagian instrumentasi pada proses pembuatan formaldehid dan hidrogen peroksida berbahan baku metanol dengan reaksi enzimatik ini menggunakan konfigurasi pengendalian feedback, mulai dari pengendalian temperatur, pengendalian ketinggian, pengendalian perbedaan tekanan, dan pengendalian tekanan. 
feedback.gif
Gambar 1. Diagram Input-Output Pengendalian Feedback

 

  • Feedforward control configuration
    Konfigurasi sistem pengendali feedforward memanfaatkan pengukuran langsung pada disturbance untuk mengatur harga variabel yang akan dimanipulasi. Tujuan pengendalian adalah mempertahankan variabel output yang dikontrol pada nilai yang diharapkan. 

    feedforward.gif
    Gambar 2. Diagram Input-Output Pengendalian Feedforward
  • Inferential Control Configuration
    Konfigurasi sistem pengendali inferential memanfaatkan data hasil pengukuran output sekunder (secondary measurement) untuk mengatur harga variabel yang akan dimanipulasi. Hal ini dilakukan karena variabel output yang akan dikendalikan tidak dapat diukur secara langsung. Tujuan pengendalian ini adalah memeprtahankan variabel unmeasured output tersebut pada tingkat/harga yang ditetapkan pada set point. Alat ukur menggunakan harga variabel terukur (measured output) yang terdeteksi dalam persamaan neraca massa dan energi yang dapat mewakili proses ke dalam suatu persamaan matematika tertentu yang oleh komputer dapat dihitung menjadi output unmeasured variables yang ingin dikendalikan. Hasil perhitungan tersebut oleh instrumentasi pengendalian kemudian digunakan untuk mengatur harga variabel yang dimanipulasi. 

    inferential.gif
    Gambar 3. Diagram Input-Output Pengendalian Inferential

    Inferential control configuration ini digunakan dalam pengendalian komposisi aliran output pada setiap kolom distilasi dan tangki mixer berpengaduk. Analisis komposisi tidak dilakukan langsung dengan composition analyzer karena harga alat tersebut mahal, dan alat tersebut sangat analitik sehingga kapasitasnya kecil dan tidak sesuai diterapkan dalam skala pabrik. Komposisi aliran kolom distilasi dan mixer harus selalu dikendalikan karena pasar sangat ketat menuntut produk formaldehid dan hidrogen peroksida sesuai spesifikasi.

  • Perancangan Sistem Pengendali

    Sistem pengendali (controller) adalah elemen aktif dalam sistem pengendalian yang menerima informasi dari pengukuran dan membuat tindakan yang sesuai untuk mengatur harga manipulated variables. Pengaturan manipulated variables sangat bergantung pada control law yang diterapkan secara otomatis pada controller. Beberapa control law yang umum diterapkan pada sistem pengendalian:

    1. Penggunaan proportional controller (P-controller) dimana nilai output dari P-controller akan sebanding terhadap error.
      p.gif
    2. Penggunaan proportional-integral controller (PI-controller) dimana nilai output dari PI-controller akan sebanding terhadap error ditambah suatu faktor dikali nilai integrasi error sebagai fungsi waktu.
      pi.gif
    3. Penggunaan proportional-integral-derivative controller dimana nilai output dari PID-controller akan ditentukan oleh konstanta yang menghubungkan kesebandingan error terhadap output ditambah suatu faktor dikali nilai integrasi error sebagai fungsi waktu lalu ditambah suatu faktor dikali nilai diferensial (gradien/slope) error sebagai fungsi waktu.
      pid.gif

    Penggunaan Komputer Digital pada Pengendali Proses

    Dalam aspek pengendalian seluruh pabrik tidak hanya melibatkan satu unit proses, seperti CSTR, tangki berpengaduk, kolom distilasi. Pada kenyataannya proses produksi produk dari bahan baku dengan reaksi tertentu ini terdiri dari banyak unit yang saliang berhubungan dengan adanya aliran bahan (material) dan energi dari satu unit ke unit lainnya. Pada proses kimia tersebut akan timbul hal-hal karakteristik yang tidak terjadi pada pengopersian satu unit proses saja. Kemajuan teknologi komputer yang sangat pesat dengan harga yang semakin terjangkau membuat perangkat ini banyak digunakan untuk pengendalian dalam prosesproses kimia. Instrumen pengendalian pada pabrik besar dan modern umumnya dirancang menggunakan komputer pengendali secara digital. Beberapa aplikasi spesifik komputer untuk pengendalian proses adalah sebagai berikut:

    • Direct Digital Control (DDC)
      Komputer digital dapat dipakai mengendalikan secara simultan beberapa output. Pada sistem kontrol utama (supervisor controller) terdapat satu prosesor komputer untuk mengendalikan dan mengoperasikan proses. Jadi semua data dikumpulkan dalam satu unit komputer. Komputer digunakan untuk mengubah nilai set point sesuai dengan harga parameter local controller. Local controller berfungsi sebagaimana sinyal digital yang diterapkan pada Direct Digital Controller (DCC). Interfase input/output akan menghasilkan informasi kepada komputer supervisor berupa tetapan pada local control loop yang dipakai komputer untuk menghasilkan nilai set point pada local control loop. Komputer menrima secara langsung hasil pengukuran dari proses, kemudian menghitung nilai manipulated variables berdasarkan control law yang telah diprogram dan tersimpan dalam memorinya. 

      ddc.gif
      Gambar 4. Diagram Input-Output Direct Digital Control (DDC)

      Manipulated variables tersebut kemudian diterapkan kembali ke dalam proses dengan menggunakan elemen pengendali akhir seperti kerangan, pompa, kompresor, switch, dan sebagainya. Dengan demikian komputer dan proses dijembatani oleh perangkat-perangkat keras yang digunakan untuk mendapatkan komunikasi yang baik antara komputer dengan proses. DDC umumnya dipakai untuk unit dalam skala terbatas seperti untuk satu unit produksi, atau digunakan untuk sebuah unit operasi dengan sebuah unit produksi.

    • Distributed Control System (DCS)
      Penggunaan sistem kontrol dengan memakai satu buah komputer untuk mengendalikan sebuah unit operasi akan lebih mudah diterapkan. Namun, sistem supervisor control akan mengalami kesulitan jika diterapkan pada unit yang kompleks karena akan dihasilkan suatu pengendalian dan pengoperasian yang sangat kompleks dan rumit. Metoda terbaru pengendalian proses dalam pabrik adalah Distributed Control System (DCS) yang langsung sukses diminati untuk skala komersial saat pertama kali diluncurkan. 

      dcs.gif
      Gambar 5. Diagram Input-Output Distributed Control System (DCS)

      DCS terdiri dari beberapa microprocessor yang saling terhubungkan dalam satu jaringan komunikasi digital yang sering dikenal dengan data highway. Tujuan pengendalian proses adalah mendapatkan kinerja proses yang optimum. Seringkali operator manusia sukar atau tidak dapat menemukan setting pengoperasian pabrik yang terbaik agar biaya operasi dapat ditekan seminimal mungkin. Hal ini disebabkan tingginya kompleksitas pabrik kimia yang akan dikendalikan. Pada kasus seperti ini programmed intelligence dari komputer dapat dimanfaatkan untuk menganalisis situasi proses dan memberikan usulan setting pengoperasian yang terbaik. Pada supervisory control ini, komputer mengkoordinasi aktivitas dari beberapa loop DCC. Pada sistem ini satu buah komputer utama (supervisor computer) membagi kerja pengendalian pada beberapa komputer yang bekerja sebagai DDC lokal. Keuntungan sistem DCS dibanding DDC adalah sistem DCS memungkinkan area kerja atau DDC lokal satu tetap bekerja dan dapat dikendalikan merkipun ada suatu unit atau lokasi tertentu yang tidak beroperasi. Sebaliknya, kekurangan unit DCS dibanding DDC adalah biaya investasi sistem DCS yang sangat besar karena membutuhkan komputer pengendali yang lebih banyak.

    • Scheduling Computer Control (SCC)
      Kemungkinan penggunaan komputer yang terakhir adalah untuk mengatur penjadwalan operasi suatu pabrik kimia. Kondisi pasar yang berubah setiap waktu akan menyebabkan manajemen perlu terus menerus mengubah penjadwalan operasional pabrik, seperti mengurangi waktu produksi untuk mencegah tertumpuknya produk (over stock), penambahan produksi saat kebutuhan meningkat, dan lain-lain. Keputusankeputusan ini dapat diambil dengan bantuan komputer digital, yang kemudian akan mengomunikasikan kepuusan-keputusan tersebut dengan supervisory computer controller, yang kemudian mengimplementasikan keputusan-keputusan tersebut melalui DDC-DDC yang berhubungan langsung dengan proses.

    Perangkat Keras Sistem Pengendali Proses

    Pada setiap konfigurasi sitem pengendali dapat dibedakan masing-masing elemen perangkat keras sebagai berikut:

    1. Proses kimia
      Proses kimia mewakili peralatan proses yang digunakan dan proses-proses/operasi baik secara kimia maupun fisika yang terjadi di dalam peralatan tersebut.
    2. Instrumen Pengukur atau Sensor
      Peralatan pengukur/sensor digunakan untuk mengukur disturbance, mengukur controlled output variables, dan mengukur secondary ouput variables. Peralatan pengukur/sensor adalah sumber informasi yang mengidentifikasi hal-hal yang sedang terjadi pada proses. Salah satu syarat penting dalam pemilihan sensor adalah hasil pengukuran sensor harus dapat ditransmisikan dengan mudah. Contoh instrumen pengendalian yang dipakai pada pabrik formaldehid dan hidrogen peroksida ini adalah termokopel, venturi meter, dan composition analyzer.
    3. Transducers
      Beberapa hasil pengukuran tidak dapat digunakan untik tujuan pengendalian sebelum dikonversikan menjadi besaran fisik yang dapat dengan mudah ditransmisikan seperti tegangan listrik. Transducer merupakan alat yang digunakan untuk mengonversi hasil pengukuran menjadi besaran yang ditransmisikan.
    4. Jalur transmisi dan amplifier
      Jalur transmisi merupakan media untuk membawa sinyal hasil pengukuran dari alat ukur ke controller. Pada banyak kasus sinyal yang dihasilkan alat ukur terlalu lemah untuk ditransmisikan sehingga sinyal tersebut harus diperkuat terlebih dahulu dengan amplifier.
    5. Elemen Pengendali
      Elemen pengendali adalah perangkat keras yang memiliki intelegensi. Perangkat ini menerima informasi dari alat ukur dan memutuskan tindakan yang harus dilakukan.
    6. Elemen Pengendali Akhir
      Elemen pengendali akhir merupakan perangkat keras yang melaksanakan tindakan yang diperintahkan controller. Elemen pengendali akhir yang diaplikasikan pada perancangan pabrik ini adalah control valve yang membuka dan menutup sampai derajat tertentu sesuai keputusan controller.
    7. Elemen pencatat
      Elemen pencatat merupakan bagian dari sistem pengendali yang mencatat semua variabel sehingga kelakukan proses yang sedang berlangsung dapat didemonstrasikan secara visual.

    Bersambung. [Metode Tuning, Parameter Error, Contoh Kasus, dan Penggunaan MATLAB Simulink.]

    Referensi:
    [1] Sitompul J., Limbong M. Modul Praktikum Pengendalian Proses. Departemen Teknik Kimia ITB.
    [2] Stephanopoulos G. Chemical Process Control: An Introduction to Theory and Practice. Prentice/Hall International, Inc.

    sumber www.majarikanayakan.com

    July 10, 2008 Posted by | All about Teknik Kimia | | Leave a comment

    Pengendalian Proses (Bagian 1)

    Pabrik kimia merupakan susunan/rangkaian berbagai unit pengolahan yang terintegrasi satu sama lain secara sistematik dan rasional. Tujuan pengoperasian pabrik kimia secara keseluruhan adalah mengubah (mengkonversi) bahan baku menjadi produk yang lebih bernilai guna. Dalam pengoperasiannya pabrik akan selalu mengalami gangguan (disturbance) dari lingkungan eksternal. Selama beroperasi, pabrik harus terus mempertimbangkan aspek keteknikan, keekonomisan, dan kondisi sosial agar tidak terlalu signifikan terpengaruh oleh perubahan-perubahan eksternal tersebut.

    Artikel ini terbagi menjadi 3 bagian yang adalah sebagai berikut:

    1. Bagian 1: Pendahuluan, Sistem Pengendalian, Disain Elemen Pengendali Proses, Pendefinisian Tujuan Pengendalian, dan Pemilihan Variabel yang Harus Diukur.
    2. Bagian 2: Pemilihan Variabel yang Dimanipulasi, Pemilihan Konfigurasi Pengendalian, Perancangan Sistem Pengendali, Penggunaan Komputer Digital pada Pengendali Proses, dan Perangkat Keras Sistem Pengendali Proses.
    3. Bagian 3: Metode Tuning, Parameter Error, Contoh Kasus, dan Penggunaan MATLAB Simulink.

    Pendahuluan

    Agar proses selalu stabil dibutuhkan instalasi alat-alat pengendalian. Alat-alat pengendalian dipasang dengan tujuan:

    1. Menjaga keamanan dan keselamatan kerja
      Keamanan dalam operasi suatu pabrik kimia merupakan kebutuhan primer untuk orang-orang yang bekerja di pabrik dan untuk kelangsungan perusahaan. Untuk menjaga terjaminnya keamanan, berbagai kondisi operasi pabrik seperti tekanan operasi, temperatur, konsentrasi bahan kimia, dan lain sebagainya harus dijaga tetap pada batas-batas tertentu yang diizinkan.
    2. Memenuhi spesifikasi produk yang diinginkan
      Pabrik harus menghasilkan produk dengan jumlah tertentu (sesuai kapasitas desain) dan dengan kualitas tertentu sesuai spesifikasi. Untuk itu dibutuhkan suatu sistem pengendali untuk menjaga tingkat produksi dan kualitas produk yang diinginkan.
    3. Menjaga peralatan proses dapat berfungsi sesuai yang diinginkan dalam desain
      Peralatan-peralatan yang digunakan dalam operasi proses produksi memiliki kendala-kendala operasional tertentu yang harus dipenuhi. Pada pompa harus dipertahankan NPSH, pada kolom distilasi harus dijaga agar tidak flooding, temperatur dan tekanan pada reaktor harus dijaga agar tetep beroperasi aman dan konversi menjadi produk optimal, isi tangki tidak boleh luber ataupun kering, serta masih banyak kendalakendala lain yang harus diperhatikan.
    4. Menjaga agar operasi pabrik tetap ekonomis.
      Operasi pabrik bertujuan menghasilkan produk dari bahan baku yang memberi keuntungan yang maksimum, sehingga pabrik harus dijalankan pada kondisi yang menyebabkan biaya operasi menjadi minimum dan laba yang diperoleh menjadi maksimum.
    5. Memenuhi persyaratan lingkungan
      Operasi pabrik harus memenuhi berbagai peraturan lingkungan yang memberikan syarat-syarat tertentu bagi berbagai buangan pabrik kimia.

    Untuk memenuhi persyaratan diatas diperlukan pengawasan (monitoring) yang terus menerus terhadap operasi pabrik kimia dan intervensi dari luar (external intervention) untuk mencapai tujuan operasi. Hal ini dapat terlaksana melalui suatu rangkaian peralatan (alat ukur, kerangan, pengendali, dan komputer) dan intervensi manusia (plant managers, plants operators) yang secara bersama membentuk control system. Dalam pengoerasian pabrik diperlukan berbagai prasyarat dan kondisi operasi tertentu, sehingga diperlukan usaha-usaha pemantauan terhadap kondisi operasi pabrik dan pengendalian proses supaya kondisi operasinya stabil.

    Sistem Pengendalian

    Sistem pengendali diterapkan untuk memenuhi 3 kelompok kebutuhan, yaitu:

    1. menekan pengaruh gangguan eksternal
    2. memastikan kestabilan suatu proses kimiawi
    3. optimasi kinerja suatu proses kimiawi

    Variabel-variabel yang terlibat dalam proses operasi pabrik adalah F (laju alir), T (temperatur), P (tekanan) dan C (konsentrasi). Variabel-variabel tersebut dapat dikategorikan menjadi 2 kelompok, yaitu variabel input dan variabel output. Variabel input adalah variabel yang menandai efek lingkungan pada proses kimia yang dituju. Variabel ini juga diklasifikasikan dalam 2 kategori, yaitu:

    1. manipulated (adjustable) variable, jika harga variabel tersebut dapat diatur dengan bebas oleh operator atau mekanisme pengendalian
    2. disturbance variable, jika harga tidak dapat diatur oleh operator atau sistem pengendali, tetapi merupakan gangguan.

    Sedangkan variabel output adalah variabel yang menandakan efek proses kimia terhadap lingkungan yang diklasifikasikan dalam 2 kelompok:

    1. measured output variables, jika variabel dapat diketahui dengan pengukuran langsung
    2. unmeasured output variables, jika variabel tidak dapat diketahui dengan pengukuran langsung

    Disain Elemen Pengendali Proses

    Desain elemen pengendalian harus sesuai dengan kebutuhan pengendalian yang diinginkan dan bekerja delam pengendalian proses pabrik. Untuk mencapai tujuan tersebut perlu diperhatikan langkah-langkah dalam mendesain sistem pengendalian Dalam usaha merancang suatu sistem pengendali yang dapat memenuhi kebutuhan suatu proses kimia terdapat beberapa unsur penting dan pertimbangan-pertimbangan dasar yang harus diperhatikan. Unsur-unsur tersebut adalah:

    1. pendefinisian/penetapan tujuan dan sasaran pengendalian (control objective definition)
    2. penentuan variabel yang harus diukur (measurement selection)
    3. penentuan variabel yang akan dimanipulasi (manipulated variables selection)
    4. pemilihan konfigurasi pengendalian (control configuration selection)
    5. perancangan sistem pengendali (controller design)

    Pendefinisian Tujuan Pengendalian

    Dalam mendefinisikan tujuan pengendalian perlu diperhatikan beberapa hal pentuing yang merupakan pronsip dasar penerapan pengendalian proses pada pabrik. Prinsip utama penerapan pengendalian proses pada pabrik adalah untuk memastikan kinerja suatu proses kimia, memastikan kestabilan suatu proses kimia, dan menekan gangguan eksternal. Prinsip dasar ini harus tercakup dalam pendefinisian tujuan pengendalian baik satu atau kombinasi dari ketiga hal tersebut.

    Pada awal perancangan, sasaran pengendalian (control objectives) didefinisikan secara kualitatif, selanjutnya tujuan ini dikuantifikasi dalam bentuk variabel output. Sebagai contoh untuk sistem reaktor CSTR salah satu pemakaian controller dilakukan dengan tujuan pengendalian (control objectives) sebagai berikut:

    • secara kualitatif : menjamin kestabilan temperatur di dalam reaktor (diasumsikan sama dengan temperatur keluaran reaktor) pada keadaan steady state yang tidak stabil
    • secara kuantitatif : menjaga agar temperatur (variabel output) tidak berfluktuasi lebih dari 5% harga nominalnya.

    Pemilihan Variabel yang Harus Diukur

    Beberapa pemhukuran variabel harus dilakukan agar kinerja operasi pabrik dapat dimonitor Terdapat beberapa jenis pengukuran variabel yang dapat diterapkan untuk pengendalian proses:

    1. Primary Measurement
      Bila memungkinkan sebaiknya pada pengendalian proses harga variabel yang menjadi objective pengendalian harus diukur/dimonitor. Cara pengukuran variabel proses yang menjadi control objective pengendalian secara langsung disebut primary measurement. Sebagai contoh pada sistem mixer tangki berpengaduk control objective adalah mempertahankan T dan h cairan dalam tangki pada harga T = Tsp (sp = set point) dan h=hsp. Karena itu, usaha pertama yang harus dilakukan adalah memasang alat pengukur untuk dapat mengamati nilai T dan h cairan dalam tangki secara langsung, yaitu dengan denggunakan termokopel untuk pengukuran T dan differential pressure cell untuk mengukur h.
    2. Secondary Measurement
      Pada kasus-kasus tertentu, variabel yang merupakan control objective tidak dapat diukur secara langsung (unmeasured output). Pada kasus-kasus dengan control objective yang tidak dapat diukur langsung tersebut, harus diukur variabel lain yang tergolong measured variable dan dapat dikorelasikan melalui suatu hubungan matematis tertentu dengan unmeasured output yang ingin dikendalikan.
    3. Pengukuran external disturbance
      Pengukuran disturbance sebelum variabel tersebut masuk ke dalam proses dapat sangat menguntungkan, karena hasil pengukuran tersebut dapat memberikan informasi mengenai kelakuan proses yang akan terjadi. Informasi tersebut dapat digunakan untuk menentukan aksi pengendalian yang harus diambil apabila menggunakan sistem pengendalian feedforward.

    Bersambung. [Pemilihan Variabel yang Dimanipulasi, Pemilihan Konfigurasi Pengendalian, Perancangan Sistem Pengendali, Penggunaan Komputer Digital pada Pengendali Proses, dan Perangkat Keras Sistem Pengendali Proses.]

    Referensi:
    [1] Sitompul J., Limbong M. Modul Praktikum Pengendalian Proses. Departemen Teknik Kimia ITB.
    [2] Stephanopoulos G. Chemical Process Control: An Introduction to Theory and Practice. Prentice/Hall International, Inc.

    sumber: www.majarikanayakan.com

    July 10, 2008 Posted by | All about Teknik Kimia | | 1 Comment

    Gasifikasi Batubara dengan Unggun Terfluidakan

    Apa yang terbayang di benak Anda ketika mendengar kata ‘gasifikasi’? Pembuatan gas kah? Tepat! Secara singkat, gasifikasi dapat diartikan sebagai pembuatan gas, sedangkan definisi gasifikasi yang sebenarnya adalah proses konversi bahan bakar yang mengandung karbon (baik padat maupun cair) menjadi gas yang memiliki nilai bakar dengan cara oksidasi parsial pada temperatur tinggi.

    Di bidang teknik kimia, gasifikasi digunakan sebagai teknik untuk mengkonversi bahan bakar padat menjadi gas. Gas yang dihasilkan pada gasifikasi disebut gas produser yang kandungannya didominasi oleh gas CO, H2, dan CH4. Bahan bakar yang umum digunakan pada gasifikasi adalah bahan bakar padat, salah satunya adalah batubara. Jika ditinjau dari produk yang dihasilkan, pengolahan batubara dengan gasifikasi lebih menguntungkan dibandingkan pengolahan dengan pembakaran langsung. Dengan teknik gasifikasi, produk pengolahan batubara lebih bersifat fleksibel karena dapat diarahkan menjadi bahan bakar gas atau bahan baku industri kimia yang tentunya memiliki nilai jual yang lebih tinggi.

    Untuk melangsungkan gasifikasi diperlukan suatu suatu reaktor. Reaktor tersebut dikenal dengan nama gasifier. Ketika gasifikasi dilangsungkan, terjadi kontak antara bahan bakar dengan medium penggasifikasi di dalam gasifier. Kontak antara bahan bakar dengan medium tersebut menentukan jenis gasifier yang digunakan. Secara umum pengontakan bahan bakar dengan medium penggasifikasinya pada gasifier dibagi menjadi tiga jenis, yaitu entrained bed, fluidized bed, dan fixed/moving bed. Perbandingan ketiga jenis gasifier tersebut ditampilkan pada Tabel 1.

     

    Tabel 1. Perbandingan jenis-jenis gasifier 

    Parameter Fixed/Moving Bed Fluidized Bed Entrained Bed
    Ukuran umpan < 51 mm < 6 mm < 0.15 mm
    Toleransi kehalusan partikel Terbatas Baik Sangat baik
    Toleransi kekasaran partikel Sangat baik Baik Buruk
    Toleransi jenis umpan Batubara kualitas rendah Batubara kualitas rendah dan biomassa Segala jenis batubara, tetapi tidak cocok untuk biomassa
    Kebutuhan oksidan Rendah Menengah Tinggi
    Kebutuhan kukus Tinggi Menengah Rendah
    Temperatur reaksi 1090 °C 800 – 1000 °C > 1990 °C
    Temperatur gas keluaran 450 – 600 °C 800 – 1000 °C > 1260 °C
    Produksi abu Kering Kering Terak
    Efisiensi gas dingin 80% 89.2% 80%
    Kapasitas penggunaan Kecil Menengah Besar
    Permasalahan Produksi tar Konversi karbon Pendinginan gas produk

    Pada pembahasan ini, teknik gasifikasi yang akan dibahas adalah gasifikasi unggun terfluidakan. Jika dibandingkan dengan jenis gasifikasi lainnya, gasifikasi unggun terfluidakan memiliki beberapa keunggulan, di antaranya adalah:

    • mampu memproses bahan baku berkualitas rendah,
    • kontak antara padatan dan gas bagus,
    • luas permukaan reaksi besar sehingga reaksi dapat berlangsung dengan cepat,
    • efisiensi tinggi, dan
    • emisi rendah.

    Reaksi pada Gasifikasi Unggun Terfluidakan

    Gasifikasi umumnya terdiri dari empat proses, yaitu pengeringan, pirolisis, oksidasi, dan reduksi. Pada gasifier jenis unggun terfluidakan, kontak yang terjadi saat pencampuran antara gas dan padatan sangat kuat sehingga perbedaan zona pengeringan, pirolisis, oksidasi, dan reduksi tidak dapat dibedakan. Salah satu cara untuk mengetahui proses yang berlangsung pada gasifier jenis ini adalah dengan mengetahui rentang temperatur masing-masing proses, yaitu:

    • Pengeringan: T > 150 °C
    • Pirolisis/Devolatilisasi: 150 < T < 700 °C
    • Oksidasi: 700 < T < 1500 °C
    • Reduksi: 800 < T < 1000 °C

    Proses pengeringan, pirolisis, dan reduksi bersifat menyerap panas (endotermik), sedangkan proses oksidasi bersifat melepas panas (eksotermik). Pada pengeringan, kandungan air pada bahan bakar padat diuapkan oleh panas yang diserap dari proses oksidasi. Pada pirolisis, pemisahan volatile matters (uap air, cairan organik, dan gas yang tidak terkondensasi) dari arang atau padatan karbon bahan bakar juga menggunakan panas yang diserap dari proses oksidasi. Pembakaran mengoksidasi kandungan karbon dan hidrogen yang terdapat pada bahan bakar dengan reaksi eksotermik, sedangkan gasifikasi mereduksi hasil pembakaran menjadi gas bakar dengan reaksi endotermik. Penjelasan lebih lanjut mengenai proses-proses tersebut disampaikan pada uraian berikut ini.

    Pirolisis
    Pirolisis atau devolatilisasi disebut juga sebagai gasifikasi parsial. Suatu rangkaian proses fisik dan kimia terjadi selama proses pirolisis yang dimulai secara lambat pada T < 350 °C dan terjadi secara cepat pada T > 700 °C. Komposisi produk yang tersusun merupakan fungsi temperatur, tekanan, dan komposisi gas selama pirolisis berlangsung. Proses pirolisis dimulai pada temperatur sekitar 230 °C, ketika komponen yang tidak stabil secara termal, seperti lignin pada biomassa dan volatile matters pada batubara, pecah dan menguap bersamaan dengan komponen lainnya. Produk cair yang menguap mengandung tar dan PAH (polyaromatic hydrocarbon). Produk pirolisis umumnya terdiri dari tiga jenis, yaitu gas ringan (H2, CO, CO2, H2O, dan CH4), tar, dan arang. Secara umum reaksi yang terjadi pada pirolisis beserta produknya adalah:

     

    Oksidasi (Pembakaran)
    Oksidasi atau pembakaran arang merupakan reaksi terpenting yang terjadi di dalam gasifier. Proses ini menyediakan seluruh energi panas yang dibutuhkan pada reaksi endotermik. Oksigen yang dipasok ke dalam gasifier bereaksi dengan substansi yang mudah terbakar. Hasil reaksi tersebut adalah CO2 dan H2O yang secara berurutan direduksi ketika kontak dengan arang yang diproduksi pada pirolisis. Reaksi yang terjadi pada proses pembakaran adalah:

     

    C + O2 -> CO2 + 393.77 kJ/mol karbon 

    Reaksi pembakaran lain yang berlangsung adalah oksidasi hidrogen yang terkandung dalam bahan bakar membentuk kukus. Reaksi yang terjadi adalah:

     

    H2 + ½ O2 -> H2O + 742 kJ/mol H2 

    Reduksi (Gasifikasi)
    Reduksi atau gasifikasi melibatkan suatu rangkaian reaksi endotermik yang disokong oleh panas yang diproduksi dari reaksi pembakaran. Produk yang dihasilkan pada proses ini adalah gas bakar, seperti H2, CO, dan CH4. Reaksi berikut ini merupakan empat reaksi yang umum telibat pada gasifikasi.

    • Water-gas reaction
      Water-gas reaction merupakan reaksi oksidasi parsial karbon oleh kukus yang dapat berasal dari bahan bakar padat itu sendiri (hasil pirolisis) maupun dari sumber yang berbeda, seperti uap air yang dicampur dengan udara dan uap yang diproduksi dari penguapan air. Reaksi yang terjadi pada water-gas reaction adalah: 

     

    C + H2O -> H2 + CO – 131.38 kJ/kg mol karbon 

    Pada beberapa gasifier, kukus dipasok sebagai medium penggasifikasi dengan atau tanpa udara/oksigen.

  • Boudouard reaction
    Boudouard reaction merupakan reaksi antara karbondioksida yang terdapat di dalam gasifier dengan arang untuk menghasilkan CO. Reaksi yang terjadi pada Boudouard reaction adalah: 
  •  

    CO2 + C -> 2CO – 172.58 kJ/mol karbon

  • Shift conversion
    Shift conversion merupakan reaksi reduksi karbonmonoksida oleh kukus untuk memproduksi hidrogen. Reaksi ini dikenal sebagai water-gas shift yang menghasilkan peningkatan perbandingan hidrogen terhadap karbonmonoksida pada gas produser. Reaksi ini digunakan pada pembuatan gas sintetik. Reaksi yang terjadi adalah sebagai berikut: 
  •  

    CO + H2O -> CO2 + H2 – 41.98 kJ/mol

  • Methanation
    Methanation merupakan reaksi pembentukan gas metan. Reaksi yang terjadi pada methanation adalah: 
  •  

    C + 2H2 -> CH4 + 74.90 kJ/mol karbon 

    Pembentukan metan dipilih terutama ketika produk gasifikasi akan digunakan sebagai bahan baku indsutri kimia. Reaksi ini juga dipilih pada aplikasi IGCC (Integrated Gasification Combined-Cycle) yang mengacu pada nilai kalor metan yang tinggi. 

     

    Salah satu reaktor gasifikasi unggun terfluidakan di sebuah pembangkit listrik dari batubara.

     

    Gasifikasi Unggun Terfluidakan

    Gasifikasi unggun terfluidakan dioperasikan dengan cara memfluidisasi partikel bahan bakar dengan gas pendorong yang berupa udara/oksigen, baik dicampur dengan kukus maupun tidak dicampur. Gas pendorong tersebut memiliki dua fungsi, yaitu sebagai reaktan dan sebagai medium fluidisasi. Pada gasifikasi unggun terfluidakan, gas pendorong yang umum digunakan adalah udara. Pada gasifier jenis ini, udara dan bahan bakar tercampur pada unggun yang terdiri dari padatan inert berupa pasir. Keberadaan padatan inert tersebut sangat penting karena berfungsi sebagai medium penyimpan panas.

    Gasifikasi unggun terfluidakan dioperasikan pada temperatur relatif rendah, yaitu 800 – 1000 °C. Temperatur operasi tersebut berada di bawah temperatur leleh abu sehingga penghilangan abu yang dihasilkan pada gasifikasi jenis ini lebih mudah. Hal inilah yang menyebabkan gasifikasi unggun terfluidakan dapat digunakan pada pengolahan bahan bakar dengan kandungan abu tinggi sehingga rentang penerapan gasifikasi unggun terfluidakan lebih luas daripada gasifikasi jenis lainnya. Gasifier unggun terfluidakan memiliki beberapa kelebihan dibandingkan dengan gasifier jenis lainnya, yaitu:

    • Rentang penanganan jenis bahan bakar lebar
    • Tingkat perpindahan panas dan massa bahan bakar tinggi
    • Nilai pemanasan tinggi
    • Kadar arang rendah

    Jenis Gasifikasi Unggun Terfluidakan

    Berdasarkan proses kontak antara gas dengan partikel bahan bakar, gasifier unggun terfluidakan dibagi menjadi dua jenis, yaitu Bubbling Fluidized Bed Gasifier (BFBG) dan Circulating Fluidized Bed Gasifier (CFBG). Pada penggunaannya, CFBG lebih unggul daripada BFBG. Hal ini disebabkan oleh:

    • Adanya saluran sirkulasi yang memungkinkan pengolahan kembali bahan bakar yang belum terkonversi. Dengan adanya saluran sirkulasi tersebut, waktu tinggal bahan bakar di dalam gasifier lebih lama sehingga memungkinkan bahan bakar terkonversi sempurna.
    • Laju alir udara yang digunakan pada CFBG lebih besar. Kecepatan yang digunakan pada CFBG (4 – 7 m/s), sedangkan kecepatan yang digunakan pada BFB (1 – 1.5 m/s). Hal ini menyebabkan kecepatan kontak antara gas dengan padatan yang terjadi pada CFBG tinggi sehingga pencampuran massa dan perpindahan panas yang terjadi lebih baik daripada BFBG.

    Penggunaan Gasifikasi Unggun Terfluidakan

    Gasifikasi unggun terfluidakan dapat digunakan untuk mengolah bahan bakar dengan rentang yang lebar khususnya bahan bakar kualitas rendah dengan kandungan abu tinggi sehingga cocok digunakan untuk meningkatkan kualitas bahan bakar bernilai rendah. Pada umumnya, gas hasil gasifikasi unggun terfluidakan dibakar untuk menggerakkan mesin atau untuk membangkitkan kukus. Gas tersebut juga dapat dibakar bersamaan dengan bahan bakar lainnya. Selain itu, gas hasil gasifikasi unggun terfluidakan dapat digunakan pada pembangkit listrik melalui sebuah sistem kombinasi siklus yang disebut integrated gasification combined-cycle (IGCC).

    Jika ditinjau dari potensi penerapannya di Indonesia, teknologi gasifikasi unggun terfluidakan (fluidisasi) memiliki potensi yang cukup besar karena sebagian besar cadangan batubara Indonesia tergolong dalam batubara kualitas rendah. Oleh sebab itu, pengolahan batubara dengan cara gasifikasi unggun terfluidakan merupakan salah satu alternatif yang dapat digunakan untuk memaksimalkan hasil pengolahan batubara Indonesia.

    Referensi:
    [1] Basu P. Combustion and Gasification in Fluidized Beds. 2006; 21– 23: 59– 67: 74– 82.
    [2] Higman C, MVD Burgt. Gasification. 2003; 98 – 109.

    sumber: http://www.majarikanayakan.com

    July 10, 2008 Posted by | All about Teknik Kimia | | Leave a comment

    Tabel Periodik

    Tabel periodik

    Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.

    Lihat tabel periodik standar di bawah.

    Tabel periodik unsur-unsur kimia adalah tampilan unsur-unsur kimia dalam bentuk tabel. Unsur-unsur tersebut diatur berdasarkan struktur elektronnya sehingga sifat kimia unsur-unsur tersebut berubah-ubah secara teratur sepanjang tabel. Setiap unsur didaftarkan berdasarkan nomor atom dan lambang unsurnya.

    Tabel periodik standar memberikan informasi dasar mengenai suatu unsur. Ada juga cara lain untuk menampilkan unsur-unsur kimia dengan memuat keterangan lebih atau dari persepektif yang berbeda.

    Golongan

    Kolom dalam tabel periodik disebut golongan. Ada 18 golongan dalam tabel periodik baku. Unsur-unsur yang segolongan mempunyai konfigurasi elektron valensi yang mirip, sehingga mempunyai sifat yang mirip pula.

    Ada tiga sistem pemberian nomor golongan. Sistem pertama memakai angka Arab dan dua sistem lainnya memakai angka Romawi. Nama dengan angka Romawi adalah nama golongan yang asli tradisional. Nama dengan angka Arab adalah sistem tatanama baru yang disarankan oleh International Union of Pure and Applied Chemistry (IUPAC). Sistem penamaan tersebut dikembangkan untuk menggantikan kedua sistem lama yang menggunakan angka Romawi karena kedua sistem tersebut membingungkan, menggunakan satu nama untuk beberapa hal yang berbeda.

    Cara menampilkan tabel periodik

    Tabel periodik standar

    Aturan pewarnaan nomor atom dalam tabel periodik di atas:

    • Unsur yang nomor atomnya berwarna biru berwujud cair pada keadaan suhu dan tekanan standar (STP),
    • Unsur yang nomor atomnya berwarna hijau berwujud gas pada keadaan STP,
    • Unsur yang nomor atomnya berwarna hitam berwujud padat pada keadaan STP,
    • Unsur yang nomor atomnya berwarna merah adalah unsur sintetis (selalu berwujud padat pada keadaan STP),
    • Unsur yang nomor atomnya berwarna kelabu (dan warna latarnya lebih terang dari unsur-unsur lainnya) belum ditemukan (unsur tersebut diberi warna berdasarkan sifat yang kira-kira akan dimiliki oleh unsur tersebut ketika ditemukan).

    Tampilan lain

    Dan ini adalah tabel periodik untuk resonansi magnetis.

     Penjelasan struktur tabel periodik

    Jumlah kulit elektron yang dimiliki sebuah atom menentukan periode atom tersebut. Setiap kulit memiliki beberapa subkulit, yang terisi menurut urutan berikut ini, seiring dengan bertambahnya nomor atom:

    1s
    2s           2p
    3s           3p
    4s        3d 4p
    5s        4d 5p
    6s     4f 5d 6p
    7s     5f 6d 7p
    8s  5g 6f 7d 8p
    ...

    Berdasarkan hal inilah struktur tabel disusun. Karena elektron terluar menentukan sifat kimia suatu unsur, unsur-unsur yang segolongan umumnya mempunyai sifat kimia yang mirip. Unsur-unsur segolongan yang berdekatan mempunyai sifat fisika yang mirip, meskipun massa mereka jauh berbeda. Unsur-unsur seperiode yang berdekatan mempunyai massa yang hampir sama, tetapi sifat yang berbeda.

    Sebagai contoh, dalam periode kedua, yang berdekatan dengan Nitrogen (N) adalah Karbon (C) dan Oksigen (O). Meskipun massa unsur-unsur tersebut hampir sama (massanya hanya selisih beberapa satuan massa atom), mereka mempunyai sifat yang jauh berbeda, sebagaimana bisa dilihat dengan melihat alotrop mereka: oksigen diatomik adalah gas yang dapat terbakar, nitrogen diatomik adalah gas yang tak dapat terbakar, dan karbon adalah zat padat yang dapat terbakar (ya, berlian pun dapat terbakar!).

    Sebaliknya, yang berdekatan dengan unsur Klorin (Cl) di tabel periodik, dalam golongan Halogen, adalah Fluorin (F) dan Bromin (Br). Meskipun massa unsur-unsur tersebut jauh berbeda, alotropnya mempunyai sifat yang sangat mirip: Semuanya bersifat sangat korosif (yakni mudah bercampur dengan logam membentuk garam logam halida); klorin dan fluorin adalah gas, sementara bromin adalah cairan bertitik didih yang rendah; sedikitnya, klorin dan bromin sangat berwarna.

     Sejarah

    Artikel utama: Sejarah tabel periodik

    Tabel periodik pada mulanya diciptakan tanpa mengetahui struktur dalam atom: jika unsur-unsur diurutkan berdasarkan massa atom lalu dibuat grafik yang menggambarkan hubungan antara beberapa sifat tertentu dan massa atom unsur-unsur tersebut, akan terlihat suatu perulangan atau periodisitas sifat-sifat tadi sebagai fungsi dari massa atom. Orang pertama yang mengenali keteraturan tersebut adalah ahli kimia Jerman, yaitu Johann Wolfgang Döbereiner, yang pada tahun 1829 memperhatikan adanya beberapa triade unsur-unsur yang hampir sama.

    Beberapa triade
    Unsur Massa atom Kepadatan
    Klorin 35,5 0,00156 g/cm3
    Bromin 79,9 0,00312 g/cm3
    Iodin 126,9 0,00495 g/cm3
     
    Kalsium 40,1 1,55 g/cm3
    Stronsium 87,6 2,6 g/cm3
    Barium 137 3,5 g/cm3

    Temuan ini kemudian diikuti oleh ahli kimia Inggris, yaitu John Alexander Reina Newlands, yang pada tahun 1865 memperhatikan bahwa unsur-unsur yang bersifat mirip ini berulang dalam interval delapan, yang ia persamakan dengan oktaf musik, meskipun hukum oktaf-nya diejek oleh rekan sejawatnya. Akhirnya, pada tahun 1869, ahli kimia Jerman Lothar Meyer dan ahli kimia Rusia Dmitry Ivanovich Mendeleyev hampir secara bersamaan mengembangkan tabel periodik pertama, mengurutkan unsur-unsur berdasarkan massanya. Akan tetapi, Mendeleyev meletakkan beberapa unsur menyimpang dari aturan urutan massa agar unsur-unsur tersebut cocok dengan sifat-sifat tetangganya dalam tabel, membetulkan kesalahan beberapa nilai massa atom, dan meramalkan keberadaan dan sifat-sifat beberapa unsur baru dalam sel-sel kosong di tabelnya. Keputusan Mendeleyev itu belakangan terbukti benar dengan ditemukannya struktur elektronik unsur-unsur pada akhir abad ke-19 dan awal abad ke-20.

    July 9, 2008 Posted by | All about Teknik Kimia | | 2 Comments

    Unsur kimia yang berasal dari nama orang

    Unsur kimia yang berasal dari nama orang

    Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.

    Langsung ke: navigasi, cari

    Berikut adalah daftar unsur kimia yang berasal dari nama orang (dinamai setelah nama orang). Lambang unsur dan nomor atom ditunjukkan dalam tanda kurung.

    Berasal dari karakter mitos

    Banyak unsur kimia yang dinamai setelah nama obyek astronomis, dimana berasal dari mitos Yunani atau Romawi. Lihat Unsur kimia yang berasal dari nama tempat.

    Catatan:

    July 9, 2008 Posted by | All about Teknik Kimia | | 3 Comments

    Follow

    Get every new post delivered to your Inbox.